TU Berlin

Urban Water InterfacesJournal articles

Inhalt des Dokuments

zur Navigation

Journal articles

Groundwater quality modeling: On the analogy between integrative PSO and MRFO mathematical and machine learning models
Zitatschl├╝ssel https://doi.org/10.1002/tqem.21775
Autor Zounemat-Kermani, Mohammad and Mahdavi-Meymand, Amin and Fadaee, Marzieh and Batelaan, Okke and Hinkelmann, Reinhard
Jahr 2021
DOI https://doi.org/10.1002/tqem.21775
Journal Environmental Quality Management
Jahrgang n/a
Nummer n/a
Zusammenfassung Abstract Reliable and accurate modeling of groundwater quality is an important element of sustainable groundwater management of productive aquifers. In this research, specific conductance (SC) of groundwater is predicted based on different individual and integrative machine learning, adaptive neuro-fuzzy inference system (ANFIS), and nonlinear mathematical models. For developing the integrative models, the well-known particle swarm optimization (PSO) and novel manta ray foraging optimization (MRFO) heuristic algorithms are embedded in the models. Presenting different univariate, bivariate, and multivariate input scenarios, the parameters used to develop and validate the models include groundwater level, salinity, and water temperature at an observation well near Florida City. The findings reveal that applying more independent parameters (multivariate scenario) enhances the performance of both the mathematical and machine learning models. Even though the mathematical models present an acceptable performance for the prediction of SC (index of agreement, IA, equals 0.933), the ANFIS models provide the most accurate SC predictions (IA = 0.943). Both the PSO and MRFO algorithms improved the prediction capability of the ANFIS models with, respectively, 13\% and 5\% for the RMSE.
Typ der Publikation Journal
Link zur Publikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe